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Abstract  

The central riddle or crux of the relativistic clock paradox is studied with methods that 
are familiar from thermodynamics and hamiltonian mechanics, but which are not usually 
used, as here, to relate theory to phenomenology in the context of relativistic chrono- 
metry. Contrasting ramifications of the special and general theory are considered. 

1. Introduction 

The relativistic clock paradox can be analyzed in various different geometries 
(Markley, 1973; Brans & Stewart,  I973) ,  but  the central riddle or crux o f  the 
problem is most readily demonstrated for the case of  one-dimensional motion 
with a two-dimensional space-time. 

This case has been exhaustively analyzed in special relativity (Rindler,  
1969a; Schild, 1959), but  there are significant results which can be derived 
without  invoking the geometric structure of  space-time. 

This is done here by  using mathematical  methods which have proved very 
useful in thermodynamics and hamiltonian mechanics, but  which are not  
commonly used in the context  of  relativistic chronometry (Synge, 1960a). 

For  equations (2.1)-(2.15),  special relativity is implicitly assumed, but  the 
Lorentz metric is not  introduced explicit ly except where necessary, thus 
indicating more specifically the role of  the metric,  as opposed to results 
which follow from the propert ies of  coordinate transformations.  

Equations (3.1)--(3.2) are general relativistic to lowest order terms in a 
gravitational potential  V which uniquely cancels the time dilatation, to give 
a striking example of  how the clock paradox can vanish in the absence of 
non-gravitational forces, however real it may be under other  conditions. 

2. Special Relativi ty 

This is essentially the problem of  two clocks, in mot ion relative to one 
another,  but  fixed in their respective rest frames, one o f  which has the time 
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coordinate t and spatial coordinate x, while the other has a time coordinate 
T and spatial coordinate X. 

In special relativity the pseudo-Euclidean space-time (Minkowski space) is 
assumed to be globally mapped out by cartesian coordinates, and it is assumed 
that there is a Lorentz transformation relating the coordinate pair (t, x) to the 
pair (T, JO (although this need not necessarily be true in general) (Wheeler, 
1962). 

These assumptions are far-reaching, and have non-trivial consequences, one 
of which can be identified with the clock paradox. 

Once it is assumed that there is a functional relationship between (t, x) and 
(T, X), and that this relationship is a differentiable mapping, the coordinate 
transformation can conveniently be expressed in a differential form, as a rela- 
tionship among the coordinate differentials (dt, dx) and (dT, dJO, as, 

dT  = (aT/at)x d t+ (aT/ax)~ dx (2.1a) 

= (aT/at)x  dt+ (aT/DX)t dX  (2. lb) 

= (3T/ax)x dx + (aT/bX)x dX  (2.1c) 
dX = (DX/at)x dt + (DX/Ox)t dx  (2.2a) 

= (bX/bOT dt+ (aX/aT)t dT  (2.2b) 

= (OX/OT) x dT  + (ax /ax ) r  dx (2.2c) 

dt = (3t/OT)x dT+ (at/aX)r dX (2.3a) 

= (3t/aT) x dT+ (at/aX)T dx (2.3b) 

= (at/3X)x dX  + (3t/Dx)x dx (2.3c) 

dx = (ax/aT)x dT  + (aX/aX)r dX  (2.4a) 

= (8x/aT) t dT+ (8x/Ot)7, dt (2.4b) 

= (axlat)x  dt+ (axlaX)t dX  (2.4c) 

where the notation is borrowed from thermodynamics, so that, in equation 
(2.1a), e.g., Tis treated as a function o f t  andx, i.e., T= T( t ,x ) ,  and(~T/at)x 
is the partial derivative of T with respect to t, when x is held constant; and 
the other coefficients are similarly defined in terms of their independent 
variables, whose differentials are indicated explicitly on the right-hand side 
of each equation, indicating that each of the above twelve equations uses a 
different combination of dependent and independent variables. 

As in thermodynamics, the physical content is determined by the pheno- 
menologieal significance o f  the coefficients. 

If one clock is fixed at constant x, and is moving with velocity w relative 
to the other clock, which is assumed to be fixed at constant X (in the frame 
of reference using time coordinate T), then equation (2.2c) gives, 

w = (3X/O T)x (2.5) 

a relation valid for cartesian coordinates (though not necessarily for generalized 
coordinates). 
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Similarly, the clock at constant X has a velocity IV relative to the clock at 
constant x, and equation (2.4c) gives, 

IV = ( ax /a t ) x  (2.6) 
It is also readily reasoned out that the Lorentz-Fitzgerald length contraction 

factor (Rindler, 1969b), for a rod of infinitesimal length located at fixed x, 
and moving with the velocity w relative to the clock at fixed X, is given by 
equation (2.2c) as, 

f =  (3X/3X)T (2.7) 

For an infinitesimal rod at fixed X, with velocity IV relative to the clock at 
fixed x, equation (2.4c) gives the contraction factor, 

~" = (3x /3X) t  (2.8) 

If chronometric asymmetry is assumed, i.e., if it is assumed that the clocks 
go at different rates due to relativistic effects (but not for any other reason), 
then it can be assumed, for the sake of definiteness, that the clock at fixed X 
goes faster than the clock at fixed x. In special relativity, the proper time of 
a clock (Synge, 1960a), i.e., the time actually registered by the clock, is the 
same as the coordinate time of its rest frame (the co-moving frame of the 
clock); this is a consequence of using the Lorentz metric with cartesian 
coordinates (again it is not necessarily true in generalized coordinates). 
Equation (2. la) then gives the time dilatation factor as, 

P = (3T/3*)x (2.9) 

when the problem is analyzed relative to the co-moving frame of an observer 
at fixed x (at the position of the slower dock). On the other hand, when the 
problem is analyzed relative to the co-moving frame of an observer at fixed 
X (at the position of the faster clock), equation (2.3a) gives the time 'slowdown' 
factor, 

V = Ot / aZ)x  (2. i 0) 

for the relative rate of the slower clock, which has the velocity w relative to 
the frame of reference with coordinates (T, X). 

If P and 3, are what they are supposed to be, i.e., the time dilatation and 
slowdown factors, respectively, giving the relative rates of the two clocks, then 
common sense would appear to suggest that they should be mutually reciprocal. 
The crux of the clock paradox is that there is no such reciprocity, i.e., 

PT=/= 1 (2.11) 

contrary to intuition. As Rindler (1969) emphasizes, P and 3, are actually 
equal, rather than reciprocal, so that the reference to 3, as a 'slowdown' factor 
is a misnomer (it would be a misconception to treat 3, that way). 

These results can be derived explicitly (without making explicit use of the 
metric) by noting that, although P and 3' are not mutually reciprocal, yet 
equations (2.3)-(2.4) represent the reciprocal transformation of equations 
(2.1)-(2.2). This then yields the identity, 
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(OX/3t)x(3x/3X)t  + (3x /3 t ) x  = 0 (2.12) 

which, according to equations (2.5)-(2.10), is equivalent to the result, 

FF = - W/w (2.13) 

and it is similarly deduced that, 

3"f = - w / W  (2.14) 

so that equations (2.13) and (2.14) give, 

r3' = (Ff)  -1 (2.15) 

So far, the metric has only been invoked for the interpretation of P and 3' 
in equations (2.9) and (2.10). It now becomes necessary to invoke it again, 
by noting that the Lorentz metric (the pseudo-Euclidean metric of Minkowski 
space) guarantees that the length contraction only works one way, i.e., a 
moving rod never manifests a length dilation; hence F f <  1, and equation 
(2.15) ~ I73' > 1, thus refining equation (2.11), in a manner which indicates 
that the result derived here for infinitesimal differentials will also hold for 
arbitrary finite time intervals (such as those involved in the round-trip problems 
for which the clock paradox is typically considered), because an arbitrary sum 
or integral of positive infinitesimals is necessarily positive, and therefore there 
is no chance that the net effect will cancel out macroscopicatly, although 
equation (2.11) in itself does not suffice to prove this. 

The Lorentz metric also gives W = - w ,  so that equations (2.13) and (2.14) 
give the result expected from the invariance of the two-dimensional space- 
time volume element d t d x  under Lorentz transformations. 

3. General Relativity 

In general relativity the fundamental difference between gravitation and 
non-gravitational forces must be reckoned with (Synge, 1960b), and is 
exemplified in the first-order formula of Hafele & Keating (1972) for the 
fractional change (6) in the proper time rate of  a clock moving with speed v 
at gravitational potential V, 

6 = V -  ½v 2 (3.1) 

to lowest-order terms, using units in which the vacuum speed of light c = 1, 
and noting that, to this order, for a clock of unit mass, ½v 2 is the kinetic 
energy K. 

If (e.g.) V is a harmonic oscillator potential (as will be the case for minimal 
oscillations of a clock suspended at the end of a pendulum), then K, V, and 
6 can be averaged over a cycle, and the averaged quantities K, V, and 6 satisfy, 

= V - K (3.2) 

For a harmonic oscillator, it is well known that V = K, and hence g = 0, i.e., 
the proper time rate of such an oscillating clock is independent of the ampli- 
tude of oscillation, except for transient variations which cancel out on the 
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average, thus giving at least one example of  a result which is consistent with 
the theory of  Sachs (1973). 

The possibility of  such cancellation, together with examples of  non- 
cancellation (Markley, 1973; Brans & Stewart ,  1973), complicates the general 
relativistic time dilatation in a manner which has not  ye t  been completely and 
unambiguously resolved. 
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